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We present a phase diagram of the different dune patterns observed when a bed
composed of spherical particles is subjected to a pipe flow. While the threshold for
incipient motion is determined by the Shields number, that for dune formation seems
to be controlled by the Reynolds number. A simple linear stability analysis based
on a particle flux derived by Ouriemi, Aussillous & Guazzelli (J. Fluid Mech., 2009)
accounts reasonably well for the experimental observations.

1. Introduction
A very common feature that arises when bed constituted of particles are submitted

to shearing flows is the formation of ripples, i.e. small waves on the bed surface
having wavelengths scaling with the particle size, or of dunes, i.e. larger mounds or
ridges having wavelengths comparable to or larger than the fluid height.

Since the seminal work of Kennedy (1963), the prevalent mechanism for dune
or ripple formation is the fluid inertia or more precisely the phase-lag between the
bottom shear stress and the bed waviness generated by the fluid inertia. In that case,
the shear stress, the maxima of which are slightly shifted upstream of the crests, drags
the particles from the troughs up to the crests. This destabilizing mechanism seems
to be robust enough to apply to any steady flow, either turbulent, see e.g. Engelund
(1970), Richards (1980), Sumer & Bakioglu (1984), Colombini (2004) and Claudin
& Andreotti (2006), or viscous, see e.g. Charru & Mouilleron-Arnould (2002) and
Charru & Hinch (2006).

A few stabilizing mechanisms have been proposed, among which a well-identified
stabilizing effect due to the inclination of the bed, see e.g. Fredsøe (1974), Richards
(1980), Sumer & Bakioglu (1984), Charru & Mouilleron-Arnould (2002), Charru
& Hinch (2006) and Charru (2006). For non-zero slope, the gravity force parallel
to the bed surface favours the downhill motion of the particles and conversely
impedes the uphill motion. Another stabilizing mechanism related to particle inertia
was also suggested to arise from the phase-lag between the bottom shear stress
and the particles flow rate. This effect can be expressed in term of an inertial
length, see e.g. Andreotti, Claudin & Douady (2002), or a deposition length coming
from a stabilizing crest-erosion process, see e.g. Charru & Hinch (2006) and
Charru (2006).
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‡ Email address for correspondence: Elisabeth.Guazzelli@polytech.univ-mrs.fr
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Authors Flow Threshold prediction

Sumer & Bakioglu (1984) Turbulent Rep =
du∗

ν
= 10 − 26

Charru & Mouilleron-Arnould (2002) Laminar θ = θc
0

(
30

θc
0Gaμ

)1/2
d

hf

Charru & Hinch (2006) Laminar Ga =
396

θc
0

(
d

hf

)3

Table 1. Stability analysis prediction for the instability threshold. The particle Reynolds
number is Rep (with d the particle size, u∗ the shear velocity and ν the kinematic viscosity
of the fluid). The Shields number θ is constructed as the ratio of the shear stress at the
top of the bed to the apparent weight of a single particle. The critical Shields number for
incipient particle motion is θc

0 , the friction coefficient μ and the fluid height is hf . The Galileo

number Ga = d3(ρp − ρf )g/ν (with ρp and ρf the particle and fluid density, respectively) is
the Reynolds number based on the Stokes settling velocity of the particles.

However, a complete description of the bed instability is still lacking as the
coupling between the granular media and the fluid is poorly understood. Usually,
one first calculates the fluid flow as if the wavy bottom were fixed by considering the
superposition of a base flow on the flat bed and a perturbation induced by the wavy
bottom. Then, one needs to relate the particle flow rate to the calculated shear stress
at the top of the bed. Particle mass conservation equation is finally solved to provide
the linear growth rate of the instability. Several algebraic law relating the particle flow
rate to the bottom shear stress have been proposed in the literature (see tables 1 and
2 of Ouriemi, Aussillous & Guazzelli 2009), leading to different control parameters
for the instability threshold, such as the Reynolds, Shields or Galileo numbers (see
table 1 where some predictions of linear stability analyses, which are of particular
interest for the present study, are presented).

There is not yet a complete experimental proof that this type of modelling captures
the essence of the instability. The stability analyses of Sumer & Bakioglu (1984) and
Charru & Mouilleron-Arnould (2002) having the particle transport described by an
algebraic law, a Bagnold-type law and a cubic law, respectively, have found preferred
initial wavelengths to be an order of magnitude smaller than the observed dune
lengths. A recent stability analysis by Charru (2006) seems to improve the predictions
by including a phase-lag which erodes the peaks, i.e. the additional stabilization
mentioned above.

The present contribution aims at investigating dune formation in a confined, well-
controlled flow, namely a flow in a closed pipe. In § 2, we present an experimental
study of the evolution of a particle bed in a pipe flow. Different dune patterns are
observed as the flow rate is increased from the laminar to the turbulent regimes.
We then focus on the threshold for destabilization of the flat bed leading to dune
formation. In § 3, we adapt the stability analysis of Charru & Hinch (2000) to a
Poiseuille flow and choose to use simply the algebraic law relating the particle flux
to the cube of the Shields number found by Ouriemi et al. (2009). The control
parameter of the instability is the Reynolds number and the predicted wavelength
at onset scales with the fluid thickness. In § 4, a phase diagram for the different
dune patterns observed is proposed and comparison with theoretical predictions
provided.
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Batch Composition d (μm) ρp (g cm−13) Supplier

A Glass 132 ± 22 2.490 ± 0.003 Potters-Ballotini
B Polystyrene 538 ± 24 1.051 ± 0.002 Maxi-Blast
C PMMA 193 ± 30 1.177 ± 0.002 Lehmann & Voss & Co.

Table 2. Particle characteristics. The particle density ρp was measured with a pycnometer
and a fluid of measured density. The particle size distributions were determined with a digital
imaging system. The mean diameter is noted d and the error corresponds to one standard
deviation.

Fluid η (cP) ρf (g cm−13)

1 0.7 ± 1 0.999 ± 0.001
2 6.7 ± 1 1.016 ± 0.001
3 8 ± 1 1.018 ± 0.001
4 10 ± 1 1.022 ± 0.001
5 12 ± 1 1.023 ± 0.001

Table 3. Fluid characteristics at T = 35 ◦C. The viscosity η was measured with a falling ball
viscometer and the fluid density ρf with a pycnometer.

2. Experimental observations
2.1. Experimental set-up

The experimental test section was a horizontal glass tube of inner diameter D = 3 cm
and length L =1.8 m. The measurement zone was located at ≈ 50 cm from the
entrance. This length corresponded to the entry length necessary for the laminar flow
to develop fully inside the tube at Repipe ≈ 250, where Repipe =4Qpipeρf /πDη is the
tube Reynolds number with Qpipe the flow rate, ρf the fluid density and η the viscosity.
Experiments were performed in the range 10−1 � Repipe � 104. For Repipe � 250, the
laminar flow was then fully developed in all the measurement zone while it was not
for 250 � Repipe � 2500. The transition towards turbulence occurred for Repipe ≈ 2500.

Three different batches of spheres and five different mixtures of distilled water and
UCON oil 75H-90 000 were used in the experiments as indicated in tables 2 and 3.
First, the tube was filled with fluid and the particles were carefully introduced to form
an uniform flat bed. Second, in order to avoid flow perturbations from a pump, the
flow was driven by gravity. The fluid was delivered to the tube by continuous overflow
from an overhead tank of variable height. At the outlet of the tube, the particles
were captured by a mesh while the fluid was run into a reservoir. A pump carried
the fluid back to the overflowing tank. The temperature of the fluid was maintained
at 35 ± 1◦C by using a thermostated bath as a fluid reservoir in the fluid circulating
loop. To measure Qpipe , we collected a given volume of fluid at the outlet of the tube
in a given time. It is worth mentioning that, even though the flow is controlled by
gravity, the pressure losses in the flow loop result in an imposed flow-rate in the test
section despite the changes in the tube section as particles are lost.

2.2. Classification of dune patterns

Five different regimes can be observed as summarized in figure 1 for two different
batches of particles (batches A and C) and using fluids of varying viscosity to explore
the full Repipe range. For convenience, we have chosen to represent their domain of
validity as a function of Repipe . Below the critical Shields number for incipient particle
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Figure 1. The different dune patterns.

motion, θc
0 ≈ 0.12 (the 0 subscript indicates that this threshold corresponds to a flat

bed), the bed shape does not evolve, see e.g. Charru, Mouilleron-Arnould & Eiff
(2004), Loiseleux et al. (2005) and Ouriemi et al. (2007). Note that this first threshold
is determined by the Shields number and not the Reynolds number. Above this first
threshold, we observe a second regime where the bed shape evolves but without dune
formation. In this regime, a few layer of particles are set in motion at the surface of
the bed by the fluid flow. The bed shape evolves, becomes slightly tilted and the bed
height decreases with increasing time as the test section is not fed in with particles.
When the experiment is run for a long enough time, the bed shape eventually freezes,
exhibiting a flat surface.

Increasing again Repipe , three regimes exhibiting different dune patterns can be
found. For the first dune regime, which only exists in laminar flow, the dunes denoted
‘small dunes’ present small amplitudes. The second dune regime is observed either
in laminar or in turbulent flow. In this regime, the dunes are characterized by the
existence of vortices located at their front as can be seen in online movie 1. The
vortices erode the particle bed (see figure 1 top view of the vortex dunes). This thus
leads to dunes of very large amplitude denoted ‘vortex dunes’. Finally, when the flow
is turbulent (and only in that case), we observe a new dune pattern that we called
‘sinuous dune’. The bottom photograph of figure 1 shows a top view of a ‘sinuous
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dune’. The particle bed is eroded asymmetrically leading to the formation of a pattern
having a double periodicity. This may be explained by a destabilization of the initial
vortices observed in the ‘vortex dunes’.

2.3. Evolution of dune amplitude, wavelength and phase velocity

To quantify more precisely the time-evolution of the dunes, we recorded the evolution
of the bed height as a function of time, for a combination of fluid and particles, a given
flow rate Qpipe, and an initial height of the bed hstart

p . Using the same experimental
technique as in Ouriemi et al. (2009) where further details can be found, the bed
height was measured by imaging the upper layer of the bed illuminated by a laser
sheet aligned with the tube length in its middle. The measurement zone spanned over
45 or 75 cm and started at ≈50 cm from the entrance of the tube. The use of such a
large measurement zone provided a precise study of the wavelength evolution over a
long time but leaded to a poor resolution in dune amplitude as the accuracy in height
was ≈2–3 mm.

Here, we focus on the two first dune regimes, i.e. the regimes of small and vortex
dunes. The spatio-temporal evolution of the bed height for three experiments are
plotted in figure 2, in the small dune regime (figure 2a) and in the vortex dune regime
(figure 2b,c), with bed heights coded in grey scale. In both regimes, we observe the
formation of initial dunes in the measurement zone. These dunes have a relatively
uniform wavelength and move in the flow direction inside the tube. However, the
initial dunes preceding the vortex dunes differ from the small dunes as will be
evidenced later.

In the case of vortex dunes, the flow perturbation at the entrance of the tube
generates a first vortex dune whose vortices create a second dune downstream and so
on. The vortex perturbation by propagating downstream creates dunes downstream
over the entire length of the tube which progressively take over the initial dunes (see the
top plots of figures 2b and 2c). At the same time, the dune pattern moves downstream
as the dunes themselves are moving in the flow direction. With increasing time, the
vortices between two adjacent dunes erode the particle bed and the dunes are separated
by regions emptied of particles. Even though no dune coalescence is observed, the
pattern wavelength increases with time whereas the dune velocity decreases. The dune
motion eventually stops as the tube is not fed in with particles and the dunes are
completely separated (see the bottom plots of figures 2b and 2c). We can note that the
length-scale depends on the particles. The time scale also differs. For batch C in fluid
1, the dunes stop after less than one week, while, for batch A in fluid 1 with a flow rate
of the same order of magnitude, they move during approximately two weeks before
stopping.

In the case of the small dunes, there is also a propagation of dunes created by
the entrance perturbation. But, as these dunes have no vortex, the velocities of
dunes due to the entrance perturbation and of the initial dunes are similar and
thus these dunes do not overtake the initial dunes created in the measurement
zone (see the top plot of figure 2a). As time is increased, the wavelength increases
without showing any saturation, the dune velocity decreases, and the dune amplitude
increases (see the bottom plot of figure 2a). The small dunes never stop moving
downstream and eventually leave the tube when they reach the tube outlet. When
all the dunes have left the tube, the bed becomes flat again. A strong change in
the pattern can be observed at the bottom of figure 2(a) as a ripple instability is
observed.
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Figure 2. Spatio-temporal plots for (a) batch A in fluid 2 with Qpipe = 3.40 × 10−5 m3 s−1

and hstart
p = 22 mm (small dune regime), (b) batch A in fluid 1 with Qpipe = 3.79 × 10−5 s−1 and

hstart
p = 21 mm (vortex dune regime) and (c) batch C in fluid 1 with Qpipe =3.96 × 10−5 m3 s−1

and hstart
p = 15 mm (vortex dune regime). The grey scale represents the height hp of the

bed in mm.
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Small dunes and vortex dunes exhibit different behaviours. While the particle bed
eventually freezes in both cases, their final states also differs. For vortex dunes, due
to presence of vortices, the final state corresponds to immobile dunes separated by
regions emptied of particles. For small dunes, as there are no vortices to dig out the
particle bed, the small dunes move downstream until they leave the pipe and the
remaining state is a flat bed. These two behaviours are shown in online movies 2
and 3. Beside, their length scales and time scales are dissimilar even at the initial
stage.

To obtain a quantitative comparison, we have measured the amplitude, wavelength
and phase velocity of the dunes in both regimes. The bed height measurements
described above are further analysed to determine the local minima and maxima of
the height profile. For each acquisition time, the wavelength is given by the average
of the distance between two maxima over the measurement zone. In a similar way,
the amplitude is given by the averaged difference in height between the minima
and maxima. The velocity is given by averaging the displacements of maxima over
typically five acquisition times.

Figure 3 shows the evolution of amplitude, wavelength and phase velocity with
time of dunes appearing in the measurement zone in the small (�) and vortex
(�) dune regimes. The quantities have been made dimensionless by using D as a
length scale and the mean velocity of the flow U =4Qpipe/πD2 as a velocity scale.
The time scale of dune formation differs by a factor ten between the two dune
regimes. The amplitude and wavelength are similar in the first instant. However,
the phase velocity of the initial dunes is about ten times larger in the vortex dune
regime than in the small dune regime as shown in figure 3(b). The behaviour also
differs as it increases initially in the vortex dune regime while it presents a slow
decrease in the small dune regime. This clearly shows that the dynamics of the
initial dunes which precede the fully developed vortex dunes differ from those of
the small dunes. At later instant, for a dimensionless time ≈900 in figure 3, there
is a dramatic increase of both amplitude and wavelength as well as a maximum in
the phase velocity in the vortex dune regime. This corresponds to the take-over of
the fully developed vortex dune having vortices which intensify the dynamics. For
further times, the amplitude and wavelength of the vortex dunes saturate as the
dunes progressively become detached entities. Their speed decreases and the dunes
eventually stop moving. Small dunes have an amplitude about five times smaller than
vortex dunes at their later stage. Their wavelength shows a slow and continuous
increase.

3. A simple linear stability analysis
3.1. Poiseuille flow on a wavy bottom

To determine the fluid flow over a wavy bottom in a two-dimensional channel, we
follow the approach of Charru & Hinch (2000) initially undertaken for a Couette
flow that we adapt for a Poiseuille flow. We consider a fluid layer lying between a
flat upper wall and a wavy bottom which is assumed to be perturbed sinusoidally as
ξ = ξ1 cos(kx) with wavenumber k and amplitude ξ1 as sketched in figure 4. Following
the previous studies of Charru & Hinch (2000) and Charru & Hinch (2006), we
assume that the time scale of the fluid flow is much shorter than the time scale of the
bed evolution. The fluid flow can then be calculated as if the wavy bottom were fixed,
by considering the superposition of a base flow, u0 along the x direction, over a flat
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Figure 3. Dimensionless dune (a) amplitude A, (b) velocity V and (c) wavelength λ, for batch
C in fluid 1 with Qpipe = 3.96 × 10−5 m3 s−1 (◦, vortex dune regime) and for batch A in fluid 4

with Qpipe = 3.46 × 10−5 m3 s−1 (�, small dune regime).

bed and a disturbance, u1 and v1 along the x and y directions respectively, induced
by the wavy bottom.

We decide to make all the values dimensionless by scaling the length by the
channel thickness hf , the velocity by qf /hf , where qf is the fluid flow rate, and the
pressure by a viscous pressure ηf qf /h2

f . Therefore the time is scaled by h2
f /qf .
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Figure 4. Poiseuille flow on a wavy bottom.

We note Re2D = qf /ν the Reynolds number of the channel. The dimensionless
velocity and pressure are decomposed into a base Poiseuille flow, ū0 = 6ȳ(1 − ȳ)
and ∂p̄0/∂ȳ = − ρf gh3

f /ηf qf , and a disturbance [ū1(ȳ), v̄1(ȳ), p̄1(ȳ)]eik̄x̄ . Here, the
upper bar indicates dimensionless values, the 0 subscript the base state and the 1
subscript the perturbation.

Substituting this flow into the dimensionless linearized mass and momentum
conservation equations, we obtain a set of linear ordinary differential equations:

ik̄ū1 +
∂v̄1

∂ȳ
= 0,

Re2D

(
i6k̄ū1ȳ(1 − ȳ) + 6v̄1(1 − 2ȳ)

)
= −ik̄p̄1 − k̄2ū1 +

∂2ū1

∂ȳ2
,

i6Re2Dk̄v̄1ȳ(1 − ȳ) = −∂p̄1

∂ȳ
− k̄2v̄1 − ik̄

∂ū1

∂ȳ2
.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.1)

The kinematic boundary conditions become

ū1(0) = −6ξ̄1 and ū1(1) = v̄1(1) = v̄1(0) = 0. (3.2)

Equations (3.1) with the boundary conditions (3.2) can be solved numerically using
a Chebychev spectral collocation method (Gottlieb, Hussaini & Orszag 1984). It is
also interesting to find an analytical solution in the shallow viscous regime, k̄ � 1,
by performing an asymptotic expansion for the small dimensionless wavenumber k̄.
Assuming Re2D = O(1), the fluid velocity components can be expended in powers of
k̄ which gives the shear-rate

dū1

dȳ
= −6ξ̄1(6ȳ −4)+iξ̄1

Re2D

70

(
504ȳ5 − 1260ȳ4 + 840ȳ3 − 108ȳ + 12

)
k̄+O(k̄2). (3.3)

This exhibits the phase-lag of the bottom shear rate disturbance k̄Re2D/140 due to
inertia similar to that found by Charru & Hinch (2000) for Couette flow.

3.2. Dune formation

The dune growth is determined by the conservation equation for the particle flux qp ,
which is obtained by integrating the particle mass conservation equation over the bed
height

∂q̄p

∂x̄
+ φ0

∂ξ̄

∂t̄
= 0, (3.4)

where φ0 is the particle volume fraction inside the bed.
We assume that the dynamics of the particle is well accounted by the algebraic law

relating the dimensionless particle flux to the Shields number found by Ouriemi et al.
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(2009):

q̄p = φ0

η

ηe

Ga

24Re2D

θ3

θc2 , (3.5)

where Ga = ρf 	ρgd3/η2 is the Galileo number, θ = (ηdu/dy)/	ρgd the Shields
number and ηe an effective viscosity of the mixture of the particles and fluid that was
found to equate well to the Einstein viscosity η(1+5/2φ0). This algebraic law has been
shown to be valid for moderate Shields numbers 0.5 � θ � 1.5, i.e above the threshold
for incipient motion (the moving thickness is larger than one particle diameter) but
for shearing flow not substantially perturbed by the motion of the granular media
(Ouriemi et al. 2009).

We now introduce the time evolution of the bed surface, ξ̄ = ξ̄1e
i(k̄x̄−ω̄t̄). We

decompose the Shields number into a base Shields number θ0 corresponding to
a flat bed and a perturbation θ1e

i(k̄x̄−ω̄t̄). In the same way, we write the critical Shields
number as θc = θc

0 + θc
1 e

i(k̄x̄−ω̄t̄). Linearizing (3.5), we obtain

q̄p =
η

ηe

φ0

Ga

24Re2D

θ3
0

θc2

0

(
1 + 3

θ1e
i(k̄x̄−ω̄t̄)

θ0

− 2
θc
1 e

i(k̄x̄−ω̄t̄)

θc
0

)
. (3.6)

The local inclination of the bed surface modifies the critical Shields number, see e.g
Fredsøe (1974), Richards (1980), Charru & Hinch (2006) and Charru (2006), which
becomes

θc = θc
0

(
1 +

∂ξ̄/∂x

μ

)
= θc

0 +
θc
0

μ
ik̄ξ̄ , (3.7)

giving by identification

θc
1 =

θc
0

μ
ik̄ξ̄1, (3.8)

where μ is a friction coefficient which is the tangent of the angle of repose of the
grains and mainly depends on the grain geometry.

We suppose that the time evolution of the bed surface is slow enough to relate
the Shields number to the shear rate calculated at the top of the fixed wavy bottom
found in the preceding section:

θ =
Re2D

Ga

(
d

hf

)2 [
dū0

dȳ
(ξ̄ ) +

dū1

dȳ
(ξ̄ )ei(k̄x̄−ω̄t̄)

]
. (3.9)

The linearized shear rate calculated at the top of the fixed wavy bottom is given by
the two equations

dū0

dȳ
(ξ̄ ) =

dū0

dȳ
(0) + ξ̄

d2ū0

d2ȳ
(0) + O(ξ̄ 2),

dū1

dȳ
(ξ̄ ) =

dū1

dȳ
(0) + O(ξ̄ 2),

⎫⎪⎪⎬
⎪⎪⎭ (3.10)

exhibiting

θ0 =
Re2D

Ga

(
d

hf

)2
dū0

dȳ
(0),

θ1 =
Re2D

Ga

(
d

hf

)2[
ξ̄1

d2ū0

d2ȳ
(0) +

dū1

dȳ
(0) + O(ξ̄ 2

1 )

]
.

⎫⎪⎪⎬
⎪⎪⎭ (3.11)
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Considering the time evolution of the bed surface and introducing the linearized
flow-rate given by (3.6), the conservation equation of the particle flux at leading order
in ξ̄1 becomes

ω̄ξ̄1 = k̄
η

ηe

Ga

24Re2D

θ3
0

θc2

0

(
3
θ1

θ0

− 2
θc
1

θc
0

)
. (3.12)

Clearly, the perturbation in critical Shields number due to the local inclination of
the bed surface (which is purely imaginary) has always a stabilizing effect while the
imaginary part of the perturbation in Shields number contains the destabilizing effect
due to inertia. The frequency ω̄ is directly given by (3.12) where θ1 is obtained using
the numerical computation of (3.1) with the boundary conditions (3.2) mentioned in
the preceding section. The frequency can be separated into an imaginary part and a
real part, giving the growth rate ω̄i and the phase velocity ω̄r/k̄.

In the shallow viscous regime, k̄ � 1, (3.12) can be solved analytically by using the
shear rate given by (3.3). At leading order in k̄, this gives

ω̄ = k̄
η

ηe

Ga

24Re2D

θ3
0

θc2

0

(
6 + i

3Re2D

35
k̄ − 2ik̄

1

μ

)
, (3.13)

which leads to

ω̄r

k̄
=

η

ηe

Ga

4Re2D

θ3
0

θc2

0

, (3.14)

ω̄i = k̄2 η

ηe

Ga

24Re2D

θ3
0

θc2

0

(
3Re2D

35
− 2

1

μ

)
. (3.15)

The instability threshold, corresponding to ωi = 0, occurs at

Rec
2D =

70

3μ
. (3.16)

The important finding is that the control parameter for the dune instability is the
Reynolds number Re2D , and not the Shields number θ . It is worth mentioning that
the threshold for having a monolayer of particles in motion on a flat bed has been
found to be θc

0 = μφ0/2 which is proportional to the friction coefficient μ and to the
volume fraction of the particle inside the bed φ0 (Ouriemi et al. 2009). The threshold
for dune instability involves the Reynolds number and is also related to the friction
coefficient. Using the above expression for θc

0 , it can be expressed as

Rec
2D =

35φ0

3θc
0

. (3.17)

These thresholds, θc
0 and Rec

2D , differ but are related. Consequently, the onset for
the instability may not coincide with the onset for particle motion. In this simple
modelling, these thresholds only depend on two physical parameters, the particle
volume fraction inside the bed and the friction coefficient.

Figure 5 shows the dimensionless growth-rate ω̄i versus dimensionless wavenumber
k̄ for φ0 = 0.55 and θc

0 = 0.12 as found experimentally by Ouriemi et al. (2007) (or
equivalently μ = 0.43). Equation (3.15) valid in the shallow viscous regime, k̄ � 1,
shows a long wavelength instability with a threshold at Rec

2D = 54.3. The numerical
predictions present a good agreement with this asymptotic case for k̄ � 0.1. However,
the numerical solution indicates that the instability is not a long-wave instability
at threshold but presents a finite value k̄ ≈ 1.7 for a slightly different threshold
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Figure 5. (a) Numerical ω̄i as a function of k̄ for Re2D =35 (♦), Re2D = 49.3 (◦), Re2D = 54.3
(×) and Re2D = 70 (�). The lines represent (3.15) for Re2D =35 (small-dashed line), Re2D = 49.3
(dotted line), Re2D = 54.3 (solid line) and Re2D = 70 (long-dashed line); (b) blow-up.

Rec
2D = 49.3, see blow-up in figure 5. This is an interesting finding as it indicates that

the wavelength at onset is of the order of the fluid thickness.

4. Discussion and conclusion
Figure 6 presents the phase diagram of the dune patterns in the plane Repipe ,

Ga(hf /d)2. We choose this plane to exhibit both the threshold for incipient
particle motion controlled by the Shields number and that for dune instability
predicted to be controlled by the Reynolds number in the linear stability
analysis of § 3. In this plane, the threshold for particle motion is given by the
dashed line Repipe = (2θc

0/3βπ)Ga(hf /d)2 ≈ 0.014 Ga(hf /d)2 with θc
0 = 0.12 as found

experimentally by Ouriemi et al. (2007) with the same experimental apparatus. The
predicted instability threshold is the horizontal solid line Repipe = 140φ0/3βπθc

0 ≈ 37.
Indeed, in the case of a pipe flow, the Reynolds number is Repipe = 4ρf Qpipe/πηD

and the threshold equation (3.17) obtained for a two-dimensional channel needs
to be modified by replacing Re2D by βπRepipe/4 (or equivalently qf by βQpipe/D)
where β =1.85 has been found from numerical analysis in the limit 0.2 � hf /D � 0.8
(Ouriemi et al. 2007). Note that this predicted threshold only depends on a single
parameter (μ or θc

0 ). The dotted line indicates the domain of validity of the algebraic
law relating the dimensionless particle flux to the Shields number found by Ouriemi
et al. (2009) and thus indicates the domain of validity of the instability threshold
prediction of § 3. The three regimes of ‘no motion’ (×), ‘flat bed in motion’ (� and
� when outside the domain of validity of the model) and ‘small dunes’ (�) are well
delineated by these boundaries in the given limit of validity. Clearly, the threshold
for incipient particle motion and that for small dune instability are observed to differ
as there is a large region of ‘flat bed in motion’ without any dune formation. The
instability threshold is well described by Repipe as a control parameter and not by
θ which would be a line parallel to the dashed line nor by Ga which would be a
vertical line in figure 6. The threshold prediction of the simple linear stability analysis
of § 3 (horizontal solid line Repipe ≈ 37) provides a correct boundary for the ‘small
dune’ instability. Furthermore, the regimes of ‘vortex dunes’ (�) and ‘sinuous dunes’
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Figure 6. Phase diagram of the dune patterns in the plane Repipe , Ga(hf /d)2. The different
regimes represented are: ‘no motion’ (×), ‘flat bed in motion’ (�) and (�) when outside the
domain of validity of the model, ‘small dunes’ (◦), ‘vortex dunes’ (�) and ‘sinuous dunes’ (�).
The dashed line is the predicted threshold for particle motion, the horizontal solid line is
the predicted instability threshold, and the dotted line indicates the domain of validity of the
particle flux law. The dashed-dotted line is the prediction for instability threshold of Charru
& Mouilleron-Arnould (2002) and the vertical solid line is that of Charru & Hinch (2006).

(�) seem separated and their thresholds also well described by Repipe as a control
parameter.

We have also tested in figure 6 the prediction for instability threshold of Charru &
Mouilleron-Arnould (2002) (dashed-dotted line) and Charru & Hinch (2006) (vertical
solid line) listed in table 1. Below both of these predicted thresholds, no dune is
observed as expected but these boundaries do not properly delimitate the regime
of small dune formation. Note that we did not calibrate the adjustable coefficients
of these two models but used the original calibration of Charru & Mouilleron-
Arnould (2002) and Charru & Hinch (2006), respectively. Different coefficients
would produce boundaries having the same slope as the dashed-dotted and vertical
solid lines. These would still be unable to describe the small dune threshold in
figure 6. The difference between the stability analysis of § 3 and that of Charru
& Mouilleron-Arnould (2002) lies into the algebraic law relating qp to θ . The

analysis of § 3 uses qp ∝ θ3/θc2

while Charru & Mouilleron-Arnould (2002) takes
qp ∝ (θ − θc)3. Using a power law involving the excess Shields number yields a
threshold depending both on the Reynolds and Galileo numbers (see table 1) and
having the slope of the dashed-dotted line in figure 6. The analysis of Charru
& Hinch (2006) differs from the present analysis by the use of a different model
for particle transport which is meant to be applied only to a mobile monolayer
and which introduces the new stabilizing effect of crest erosion. The competition
between this new stabilizing effect and the destabilizing fluid inertia depends on
the Galileo number. If the Galileo number is smaller than a critical number (given
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in table 1 and vertical solid line plotted in figure 6), crest erosion overcomes and
the bed is stable. In the opposite case, the bed is unstable above a critical Shields
number. This last threshold would correspond to a line with a slope similar to
that of the dashed line in figure 6 which clearly does not delimitate the observed
instability.

Further quantitative comparisons with the predictions of the stability analysis of
§ 3 can be attempted for the onset of small dunes. Figure 7(a) compares the initial
dune velocity with (3.14). Despite large error bars and some dispersion of the data,
the agreement is good. Figure 7(b) presents the initially observed wavenumbers as
well as the most amplified numerical wavenumber as a function of Repipe . Clearly, a
long-wave instability is not observed in the experiments and a finite value ≈ 1.2 h−1

f

is obtained at threshold. The experimental wavenumbers seem rather independent of
Repipe with values ≈ 1−5 h−1

f while the numerical wavenumber is ≈ 1.7 h−1
f at threshold

and presents an increase with increasing Repipe . Nonetheless, same order of magnitude
is recovered close to threshold. It should be, however, mentioned that experimental
measurements at instability onset are very delicate and thus do not permit further
detailed comparisons. Note that, as expected, the stability analysis developed here is
unable to account for the onset of the vortex dunes. Equation (3.14) underestimates
by a factor 104 the experimental velocity of the vortex dunes. Note also that, while in
figure 6, the experimental data for small dunes are obtained with particles of batches
A to C with fluids 1–5, in figure 7 only the data for particles of batch A and fluids
2–5 are used.

In conclusion, we have given the experimental phase diagram of the different dune
patterns observed when a bed composed of spherical particles is submitted to a
shearing flow in a pipe. ‘Small dunes’ present small amplitudes and only exist in
laminar flow. ‘Vortex dunes’ are characterized by the existence of vortices at their
front and are found either in laminar or turbulent flow. ‘Sinuous dunes’, showing a
double periodicity, appear in turbulent flow. While the threshold for incipient motion
is determined by the Shields number, that for dune formation seems to be described
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by the Reynolds number and not by the Shields or Galileo numbers. Moreover, the
dune instability is not a long-wave instability at threshold but do present a finite
wavelength of the order of the fluid thickness.

To predict the small dune formation, we have performed a simple linear stability
analysis where inertia in the fluid produces a phase-lag in the shear stress which
is destabilizing, while the component of gravity down an incline stabilizes the
perturbations. We first calculated the perturbed fluid flow over a wavy bottom
considered as if fixed. Then, we used the particle flux found by Ouriemi et al. (2009)
to relate the bed height evolution to the shear stress at the top of the bed through the
particle mass conservation. The threshold for dune formation is found to be controlled
by the Reynolds number. This threshold prediction with a single adjustable parameter
that we have taken to be realistic provides a correct boundary for the onset of ‘small
dunes’. The predicted wavelength at instability threshold is of the order of the fluid
thickness in agreement with the experiments.

This simple stability analysis containing the basic ingredient of the destabilizing fluid
inertia and stabilizing gravity is found sufficient to provide realistic predictions. It is
worth pointing out that the two-phase nature of the problem has been only accounted
for in the particle conservation equation in the present study and in most of the studied
found in the literature. The interesting questions are whether there is any delay in the
flux adapting to a change in the shear stress and whether this additional stabilizing
mechanism as well as particle inertia and feed back production are significant.
Undertaking a stability analysis using the complete two-phase modelling developed
by Ouriemi et al. (2009) should enable to answer these issues in the future.
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from the Institut Français du Pétrole and Agence Nationale de la Recherche (Project
Dunes ANR-07-3 18-3892) are gratefully acknowledged. This work is part of the
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